Modeling Southern Ocean Food Webs Approaches and Challenges

Eileen Hofmann, Old Dominion University Eugene Murphy, British Antarctic Survey

Mike Dinniman, Brynn Davis, Old Dominion University Walker Smith, VIMS

Integrating Climate and Ecosystem Dynamics (ICED) in the Southern Ocean

ICES/PICES 6th Zooplankton Production Symposium New Challenges in a Changing Ocean

9-13 May 2016 Bergen,Norway

Symposium Focus

Zooplankton.....

- Pivotal role in ecosystems and biogeochemical cycles
- Community dynamics structure ecosystem
- Target for commercial harvesting
- Influenced by climate change
- ≻ Role in global ecosystem
- Focus on zooplankton in Southern Ocean food webs and incorporation into modeling frameworks

Presentation Outline

- Southern Ocean food webs
- Consider food webs from South Georgia, west Antarctic Peninsula, and Ross Sea
- Environmental changes and implications for food webs
- Projections of future changes
- Modeling strategies to assess changes in food webs

Southern Ocean Food Webs

Circumpolar System

Heterogeneity in forcing and habitat structure

Different levels of exploitation

Regional differences in Responses from top down and bottom up effects

What is a Southern Ocean Food Web?

Each scale requires a different model and/or approach

Structure modifies the operation of the ecosystem

Scale of aggregations - exploited by different predators

Krill are important to different parts of the food web because of a spatial structure that covers many scales Longevity and overwinter survival allows spatial and temporal transfer Makes energy available to predators

Modeling Southern Ocean Food Webs

South Georgia Food Web

Hill et al. (2012)

12% from Antarctic krill to upper trophic levels

South Georgia Food Web

13% from copepods to upper trophic level – different suite of organisms supported

Food Web Southern west Antarctic Peninsula

Ballerini et al. 2013

Copepods – 53% algal production Krill – 2% algal production

Food Web simple pathways embedded in more complex network

Modeling Strategy resolve food webs and individual key species (Krill)

Understand causes of change, key processes, and consequences

Adapted from Murphy et al. (2007)

Montes-Hugo et al. (2009)

Redirection of phytoplankton food Different apportioning of large and small phytoplankton

Capacity for Change

Projected Changes

Scenarios

high ice	cold	warm	low ice
	high macro- and micronutrients (incl. iron) strong influence of polar waters on lower latitudes	low macro- and/or micronutrients (incl. iron) weak influence of polar waters on lower latitudes ? reduced stabilisation associated with reduced freshwater and increased winds?	Loss of ice habitat – restricted to areas further south Disruption of ice dependent life cycles
	large diatoms high seasonal production	small autotrophs low production	Impacts on seasonality. Disruption of phenology and generation mis- matches in interaction timings Enhanced poleward distribution of warmer water species
	krill co high energy flow through krill	pepods small zooplankton salps complex interactions and energy flows	
	large predators high abundance of largest predators potentially	small predators low abundance of largest predators potentially low	
	high fishing intensity and yield ecosystem	fishing intensity and yield	Murphy et a

Murphy et al. (2013)

Smith et al. (2014)

General food web structure stays same Species exit/replaced

Changes across contrasting habitats Reorganization of food webs

Complexity of Responses

- Local/regional nature of responses, mechanisms & changes
- Direct/indirect impacts
 - Ice, snow
 - Food webs prey
 - Fishing mortalities
- Physiological/Life histories
 - Flexibility
 - Sea-ice, timing , seasonality- phenology
 - -> Population reductions/increases

Interaction effects

 Competition, predator-prey, food web structure

Atkinson et al. (2004)

Davis et al. (in prep.)

Adapted from Allen, IMBIZO, 2015

Southern Ocean Food Webs Management Strategy Evaluation

Approaches & Challenges

- Retrospective analyses
 - Past harvesting effects
- Scenario Development
 - Projections of change
- Challenges Food webs
 - Neglected trophic links
 - Linking to key species
- Challenges beyond food webs
 - Inclusion of new data/technology
 - Links to new science sectors
 - Human impacts & needs
 - Impact & attribution
 - Adaptation pathways
- Management Strategy Evaluation
 - Network of models
 - Strategy for combining models and identifying transfers between models

Final Remarks

Circulation models

- High-resolution regional and circumpolar models with skill
- Implement and compare
- Mechanistic understanding
 - Incorporate into food web and biogeochemical models
- Projections
 - Input to climate models so that useful for biological studies
 - Develop community-based scenarios (ICED)
- Comparative studies
 - Expand analyses
 - Use model structures that can be compared across systems

Combine in larger context to consider questions of the central role of zooplankton in a changing ocean

Tusen Takk!

Photos D. Costa